Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 18.411
1.
J Cell Mol Med ; 28(9): e18295, 2024 May.
Article En | MEDLINE | ID: mdl-38722284

The RNA-binding protein PNO1 plays an essential role in ribosome biogenesis. Recent studies have shown that it is involved in tumorigenesis; however, its role in hepatocellular carcinoma (HCC) is not well understood. The purpose of this study was to examine whether PNO1 can be used as a biomarker of HCC and also examine the therapeutic potential of PNO1 knockout for the treatment of HCC. PNO1 expression was upregulated in HCC and associated with poor prognosis. PNO1 expression was positively associated with tumour stage, lymph node metastasis and poor survival. PNO1 expression was significantly higher in HCC compared to that in fibrolamellar carcinoma or normal tissues. Furthermore, HCC tissues with mutant Tp53 expressed higher PNO1 than those with wild-type Tp53. PNO1 knockout suppressed cell viability, colony formation and EMT of HCC cells. Since activation of Notch signalling pathway promotes HCC, we measured the effects of PNO1 knockout on the components of Notch pathway and its targets. PNO1 knockout suppressed Notch signalling by modulating the expression of Notch ligands and their receptors, and downstream targets. PNO1 knockout also inhibited genes involved in surface adhesion, cell cycle, inflammation and chemotaxis. PNO1 knockout also inhibited colony and spheroid formation, cell migration and invasion, and markers of stem cells, pluripotency and EMT in CSCs. Overall, our data suggest that PNO1 can be used as a diagnostic and prognostic biomarker of HCC, and knockout of PNO1 by CRISPR/Cas9 can be beneficial for the management of HCC by targeting CSCs.


Biomarkers, Tumor , Carcinoma, Hepatocellular , Gene Expression Regulation, Neoplastic , Liver Neoplasms , RNA-Binding Proteins , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Humans , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Male , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Cell Line, Tumor , Female , Prognosis , Middle Aged , Signal Transduction , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Receptors, Notch/metabolism , Receptors, Notch/genetics , Cell Movement/genetics , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Epithelial-Mesenchymal Transition/genetics , Cell Proliferation , Clinical Relevance
2.
Nat Commun ; 15(1): 3904, 2024 May 09.
Article En | MEDLINE | ID: mdl-38724502

Chronic wounds are a major complication in patients with diabetes. Here, we identify a therapeutic circRNA and load it into small extracellular vesicles (sEVs) to treat diabetic wounds in preclinical models. We show that circCDK13 can stimulate the proliferation and migration of human dermal fibroblasts and human epidermal keratinocytes by interacting with insulin-like growth factor 2 mRNA binding protein 3 in an N6-Methyladenosine-dependent manner to enhance CD44 and c-MYC expression. We engineered sEVs that overexpress circCDK13 and show that local subcutaneous injection into male db/db diabetic mouse wounds and wounds of streptozotocin-induced type I male diabetic rats could accelerate wound healing and skin appendage regeneration. Our study demonstrates that the delivery of circCDK13 in sEVs may present an option for diabetic wound treatment.


Cell Proliferation , Diabetes Mellitus, Experimental , Extracellular Vesicles , Fibroblasts , Keratinocytes , RNA, Circular , Wound Healing , Animals , Extracellular Vesicles/metabolism , Extracellular Vesicles/transplantation , Wound Healing/drug effects , Humans , Male , Mice , Rats , Fibroblasts/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , Keratinocytes/metabolism , Cell Movement , Skin/metabolism , Hyaluronan Receptors/metabolism , Hyaluronan Receptors/genetics , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins c-myc/genetics , Mice, Inbred C57BL , Disease Models, Animal , Rats, Sprague-Dawley , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics
3.
Clin Transl Med ; 14(5): e1681, 2024 May.
Article En | MEDLINE | ID: mdl-38725048

BACKGROUND: We explored the potential novel anticancer mechanisms of 25-hydroxyvitamin D (25(OH)D), a vitamin D metabolite with antitumour effects in breast cancer. It is stable in serum and is used to assess vitamin D levels in clinical practice. Transfer RNA-derived small RNAs are small noncoding RNAs that generate various distinct biological functions, but more research is needed on their role in breast cancer. METHODS: Small RNA microarrays were used to explore the novel regulatory mechanism of 25(OH)D. High-throughput RNA-sequencing technology was used to detect transcriptome changes after 25(OH)D treatment and tRF-1-Ser knockdown. RNA pull-down and high-performance liquid chromatography-mass spectrometry/mass spectrometry were used to explore the proteins bound to tRF-1-Ser. In vitro and in vivo functional experiments were conducted to assess the influence of 25(OH)D and tRF-1-Ser on breast cancer. Semi-quantitative PCR was performed to detect alternative splicing events. Western blot assay and qPCR were used to assess protein and mRNA expression. RESULTS: The expression of tRF-1-Ser is negatively regulated by 25(OH)D. In our breast cancer (BRCA) clinical samples, we found that the expression of tRF-1-Ser was higher in cancer tissues than in paired normal tissues, and was significantly associated with tumour invasion. Moreover, tRF-1-Ser inhibits the function of MBNL1 by hindering its nuclear translocation. Functional experiments and transcriptome data revealed that the downregulation of tRF-1-Ser plays a vital role in the anticancer effect of 25(OH)D. CONCLUSIONS: In brief, our research revealed a novel anticancer mechanism of 25(OH)D, unveiled the vital function of tRF-1-Ser in BRCA progression, and suggested that tRF-1-Ser could emerge as a new therapeutic target for BRCA.


Breast Neoplasms , Cell Proliferation , RNA-Binding Proteins , Vitamin D , Humans , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Female , Vitamin D/metabolism , Vitamin D/analogs & derivatives , Vitamin D/pharmacology , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Cell Proliferation/genetics , Mice , Animals
4.
Viral Immunol ; 37(4): 186-193, 2024 05.
Article En | MEDLINE | ID: mdl-38717821

Coronavirus disease 2019 (COVID-19) represented an international health risk. Variants of the interferon-induced transmembrane protein-3 (IFITM3) gene can increase the risk of developing severe viral infections. This cross-sectional study investigated the association between IFITM3 rs12252A>G single nucleotide polymorphism (SNP) and COVID-19 severity and mortality in 100 Egyptian patients. All participants were subjected to serum interleukin-6 (IL-6) determination by ELISA and IFITM3 rs12252 genotyping by real-time polymerase chain reaction. Of all participants, 85.0% had the IFITM3 rs12252 homozygous AA genotype, whereas 15.0% had the heterozygous AG genotype. None of our participants had the homozygous GG genotype. The IFITM3 rs12252A allele was found in 92.5% and the G allele in only 7.5%. There was no significant association (p > 0.05) between the IFITM3 rs12252 SNP and COVID-19 severity, intensive care unit (ICU) admission, or IL-6 serum levels. The heterozygous AG genotype frequency showed a significant increase among participants who died (32.0%) compared with those who had been cured (9.3%). The mutant G allele was associated with patients' death. Its frequency among cured participants was 8.5%, whereas in those who died was 24.2% (p = 0.024) with 3.429 odds ratio [95% confidence interval: 1.1-10.4]. In conclusion, this study revealed a significant association between the G allele variant of IFITM3 rs12252 and COVID-19 mortality. However, results were unable to establish a significant link between rs12252 polymorphism, disease severity, ICU admission, or serum IL-6 levels.


COVID-19 , Genotype , Interleukin-6 , Membrane Proteins , Polymorphism, Single Nucleotide , RNA-Binding Proteins , SARS-CoV-2 , Humans , COVID-19/mortality , COVID-19/genetics , Female , Male , Egypt , Middle Aged , Membrane Proteins/genetics , Adult , Interleukin-6/blood , Interleukin-6/genetics , Cross-Sectional Studies , SARS-CoV-2/genetics , RNA-Binding Proteins/genetics , Genetic Predisposition to Disease , Alleles , Severity of Illness Index , Gene Frequency , Aged
5.
Int J Mol Sci ; 25(9)2024 Apr 27.
Article En | MEDLINE | ID: mdl-38732012

Neuroblastoma (NB) is the most commonly diagnosed extracranial solid tumor in children, accounting for 15% of all childhood cancer deaths. Although the 5-year survival rate of patients with a high-risk disease has increased in recent decades, NB remains a challenge in pediatric oncology, and the identification of novel potential therapeutic targets and agents is an urgent clinical need. The RNA-binding protein LIN28B has been identified as an oncogene in NB and is associated with a poor prognosis. Given that LIN28B acts by negatively regulating the biogenesis of the tumor suppressor let-7 miRNAs, we reasoned that selective interference with the LIN28B/let-7 miRNA interaction would increase let-7 miRNA levels, ultimately leading to reduced NB aggressiveness. Here, we selected (-)-epigallocatechin 3-gallate (EGCG) out of 4959 molecules screened as the molecule with the best inhibitory activity on LIN28B/let-7 miRNA interaction and showed that treatment with PLC/PLGA-PEG nanoparticles containing EGCG (EGCG-NPs) led to an increase in mature let-7 miRNAs and a consequent inhibition of NB cell growth. In addition, EGCG-NP pretreatment reduced the tumorigenic potential of NB cells in vivo. These experiments suggest that the LIN28B/let-7 miRNA axis is a good therapeutic target in NB and that EGCG, which can interfere with this interaction, deserves further preclinical evaluation.


Catechin , MicroRNAs , Neuroblastoma , RNA-Binding Proteins , Catechin/analogs & derivatives , Catechin/pharmacology , Neuroblastoma/genetics , Neuroblastoma/pathology , Neuroblastoma/metabolism , Neuroblastoma/drug therapy , MicroRNAs/genetics , MicroRNAs/metabolism , Humans , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Animals , Mice , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/drug effects , Cell Proliferation/drug effects , Xenograft Model Antitumor Assays , Mice, Nude
6.
Int J Mol Sci ; 25(9)2024 Apr 28.
Article En | MEDLINE | ID: mdl-38732031

Skeletal muscle myogenesis hinges on gene regulation, meticulously orchestrated by molecular mechanisms. While the roles of transcription factors and non-coding RNAs in myogenesis are widely known, the contribution of RNA-binding proteins (RBPs) has remained unclear until now. Therefore, to investigate the functions of post-transcriptional regulators in myogenesis and uncover new functional RBPs regulating myogenesis, we employed CRISPR high-throughput RBP-KO (RBP-wide knockout) library screening. Through this approach, we successfully identified Eef1a1 as a novel regulatory factor in myogenesis. Using CRISPR knockout (CRISPRko) and CRISPR interference (CRISPRi) technologies, we successfully established cellular models for both CRISPRko and CRISPRi. Our findings demonstrated that Eef1a1 plays a crucial role in promoting proliferation in C2C12 myoblasts. Through siRNA inhibition and overexpression methods, we further elucidated the involvement of Eef1a1 in promoting proliferation and suppressing differentiation processes. RIP (RNA immunoprecipitation), miRNA pull-down, and Dual-luciferase reporter assays confirmed that miR-133a-3p targets Eef1a1. Co-transfection experiments indicated that miR-133a-3p can rescue the effect of Eef1a1 on C2C12 myoblasts. In summary, our study utilized CRISPR library high-throughput screening to unveil a novel RBP, Eef1a1, involved in regulating myogenesis. Eef1a1 promotes the proliferation of myoblasts while inhibiting the differentiation process. Additionally, it acts as an antagonist to miR-133a-3p, thus modulating the process of myogenesis.


Cell Differentiation , Cell Proliferation , Muscle Development , Myoblasts , Peptide Elongation Factor 1 , Muscle Development/genetics , Peptide Elongation Factor 1/genetics , Peptide Elongation Factor 1/metabolism , Animals , Mice , Cell Proliferation/genetics , Cell Differentiation/genetics , Myoblasts/metabolism , Myoblasts/cytology , CRISPR-Cas Systems , Cell Line , MicroRNAs/genetics , MicroRNAs/metabolism , Humans , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics
7.
Biochem Biophys Res Commun ; 715: 149937, 2024 Jun 30.
Article En | MEDLINE | ID: mdl-38701688

Localization of RNAs at specific subcellular locations regulating various local cellular events has gained much attention recently. Like most other classes of RNAs, the function of newly discovered circular RNAs (circRNAs) is predominantly determined by their association with different cellular factors in the cell. CircRNAs function as transcriptional and posttranscriptional regulators of gene expression by interacting with transcription factors, splicing regulators, RNA-binding proteins, and microRNAs or by translating into functional polypeptides. Hence, studying their subcellular localization to assess their function is essential. The discovery of more than a million circRNA and increasing evidence of their involvement in development and diseases require a thorough analysis of their subcellular localization linking to their biological functions. Here, we summarize current knowledge of circRNA localization in cells and extracellular vesicles, factors regulating their subcellular localization, and the implications of circRNA localization on their cellular functions. Given the discovery of many circRNAs in all life forms and their implications in pathophysiology, we discuss the challenges in studying circRNA localization and the opportunities for unlocking the mystery of circRNA functions.


RNA, Circular , RNA, Circular/genetics , RNA, Circular/metabolism , Humans , Animals , RNA/metabolism , RNA/genetics , Extracellular Vesicles/metabolism , Extracellular Vesicles/genetics , Gene Expression Regulation , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , MicroRNAs/genetics , MicroRNAs/metabolism
8.
Nucleus ; 15(1): 2350178, 2024 Dec.
Article En | MEDLINE | ID: mdl-38717150

Paraspeckles are non-membranous subnuclear bodies, formed through the interaction between the architectural long non-coding RNA (lncRNA) nuclear paraspeckle assembly transcript 1 (NEAT1) and specific RNA-binding proteins, including the three Drosophila Behavior/Human Splicing (DBHS) family members (PSPC1 (Paraspeckle Component 1), SFPQ (Splicing Factor Proline and Glutamine Rich) and NONO (Non-POU domain-containing octamer-binding protein)). Paraspeckle components were found to impact viral infections through various mechanisms, such as induction of antiviral gene expression, IRES-mediated translation, or viral mRNA polyadenylation. A complex involving NEAT1 RNA and paraspeckle proteins was also found to modulate interferon gene transcription after nuclear DNA sensing, through the activation of the cGAS-STING axis. This review aims to provide an overview on how these elements actively contribute to the dynamics of viral infections.


Virus Diseases , Humans , Virus Diseases/metabolism , Virus Diseases/genetics , Virus Diseases/virology , Animals , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics
9.
J Ovarian Res ; 17(1): 102, 2024 May 14.
Article En | MEDLINE | ID: mdl-38745302

Ovarian cancer is a major gynecological cancer that has poor prognosis associated mainly to its late diagnosis. Cisplatin is an FDA approved ovarian cancer therapy and even though the therapy is initially promising, the patients mostly progress to resistance against cisplatin. The underlying mechanisms are complex and not very clearly understood. Using two different paired cell lines representing cisplatin-sensitive and the cisplatin-resistant ovarian cancer cells, the ES2 and the A2780 parental and cisplatin-resistant cells, we show an elevated proto-oncogene c-Myb in resistant cells. We further show down-regulated lncRNA NKILA in resistant cells with its de-repression in resistant cells when c-Myb is silenced. NKILA negatively correlates with cancer cell and invasion but has no effect on cellular proliferation or cell cycle. C-Myb activates NF-κB signaling which is inhibited by NKILA. The cisplatin resistant cells are also marked by upregulated stem cell markers, particularly LIN28A and OCT4, and downregulated LIN28A-targeted let-7 family miRNAs. Whereas LIN28A and downregulated let-7s individually de-repress c-Myb-mediated cisplatin resistance, the ectopic expression of let-7s attenuates LIN28A effects, thus underlying a c-Myb-NKILA-LIN28A-let-7 axis in cisplatin resistance of ovarian cancer cells that needs to be further explored for therapeutic intervention.


Cisplatin , Down-Regulation , Drug Resistance, Neoplasm , MicroRNAs , Ovarian Neoplasms , Proto-Oncogene Mas , Proto-Oncogene Proteins c-myb , RNA, Long Noncoding , RNA-Binding Proteins , Humans , Cisplatin/pharmacology , Cisplatin/therapeutic use , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Female , Ovarian Neoplasms/genetics , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Drug Resistance, Neoplasm/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Cell Line, Tumor , Proto-Oncogene Proteins c-myb/metabolism , Proto-Oncogene Proteins c-myb/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Signal Transduction/drug effects , Cell Proliferation/drug effects
10.
Commun Biol ; 7(1): 541, 2024 May 07.
Article En | MEDLINE | ID: mdl-38714838

Age-related diseases pose great challenges to health care systems worldwide. During aging, endothelial senescence increases the risk for cardiovascular disease. Recently, it was described that Phosphatase 1 Nuclear Targeting Subunit (PNUTS) has a central role in cardiomyocyte aging and homeostasis. Here, we determine the role of PNUTS in endothelial cell aging. We confirm that PNUTS is repressed in senescent endothelial cells (ECs). Moreover, PNUTS silencing elicits several of the hallmarks of endothelial aging: senescence, reduced angiogenesis and loss of barrier function. Findings are validate in vivo using endothelial-specific inducible PNUTS-deficient mice (Cdh5-CreERT2;PNUTSfl/fl), termed PNUTSEC-KO. Two weeks after PNUTS deletion, PNUTSEC-KO mice present severe multiorgan failure and vascular leakage. Transcriptomic analysis of PNUTS-silenced HUVECs and lungs of PNUTSEC-KO mice reveal that the PNUTS-PP1 axis tightly regulates the expression of semaphorin 3B (SEMA3B). Indeed, silencing of SEMA3B completely restores barrier function after PNUTS loss-of-function. These results reveal a pivotal role for PNUTS in endothelial homeostasis through a SEMA3B downstream pathway that provides a potential target against the effects of aging in ECs.


Cellular Senescence , Human Umbilical Vein Endothelial Cells , Mice, Knockout , Semaphorins , Animals , Mice , Humans , Semaphorins/metabolism , Semaphorins/genetics , Human Umbilical Vein Endothelial Cells/metabolism , Endothelial Cells/metabolism , Aging/metabolism , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Mice, Inbred C57BL , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/genetics , Endothelium, Vascular/metabolism
11.
PLoS One ; 19(5): e0298063, 2024.
Article En | MEDLINE | ID: mdl-38701040

OBJECTIVE: To investigate the associations of Insulin-like growth factor-II (IGF2) gene, Insulin-like growth factor-II receptor (IGF2R) gene and Insulin-like growth factor-II binding protein 2 (IGF2BP2) gene polymorphisms with the susceptibility to gestational diabetes mellitus (GDM) in Chinese population. METHODS: A total of 1703 pregnant women (835 GDM and 868 Non-GDM) were recruited in this case-control study. All participants underwent prenatal 75 g oral glucose tolerance test (OGTT) examinations during 24-28 gestational weeks at the Maternal and Child Health Hospital of Hubei Province from January 15, 2018 to March 31, 2019. Genotyping of candidate SNPs (IGF2 rs680, IGF2R rs416572, IGF2BP2 rs4402960, rs1470579, rs1374910, rs11705701, rs6777038, rs16860234, rs7651090) was performed on Sequenom MassARRAY platform. Logistic regression analysis was conducted to investigate the associations between candidate SNPs and risk of GDM. In addition, multifactor dimensionality reduction (MDR) method was applied to explore the effects of gene-gene interactions on GDM risk. RESULTS: There were significant distribution differences between GDM group and non-GDM group in age, pre-pregnancy BMI, education level and family history of diabetes (P < 0.05). After adjusted for age, pre-pregnancy BMI, education level and family history of diabetes, there were no significant associations of the candidate SNPs polymorphisms and GDM risk (P > 0.05). Furthermore, there were no gene-gene interactions on the GDM risk among the candidate SNPs (P > 0.05). However, the fasting blood glucose (FBG) levels of rs6777038 CT carriers were significantly lower than TT carriers (4.69±0.69 vs. 5.03±1.57 mmol/L, P < 0.01), and the OGTT-2h levels of rs6777038 CC and CT genotype carriers were significantly lower than TT genotype carriers (8.10±1.91 and 8.08±1.87 vs. 8.99±2.90 mmol/L, P < 0.01). CONCLUSIONS: IGF2 rs680, IGF2R rs416572, IGF2BP2 rs4402960, rs1470579, rs11705701, rs6777038, rs16860234, rs7651090 polymorphisms were not significantly associated with GDM risk in Wuhan, China. Further lager multicenter researches are needed to confirm these results.


Diabetes, Gestational , Genetic Predisposition to Disease , Insulin-Like Growth Factor II , Polymorphism, Single Nucleotide , RNA-Binding Proteins , Receptor, IGF Type 2 , Humans , Diabetes, Gestational/genetics , Female , Pregnancy , Case-Control Studies , Adult , Receptor, IGF Type 2/genetics , Insulin-Like Growth Factor II/genetics , RNA-Binding Proteins/genetics , Glucose Tolerance Test , China/epidemiology , Asian People/genetics , Genotype
12.
Cell Mol Life Sci ; 81(1): 208, 2024 May 06.
Article En | MEDLINE | ID: mdl-38710919

Trophoblast stem cells (TSCs) can be chemically converted from embryonic stem cells (ESCs) in vitro. Although several transcription factors (TFs) have been recognized as essential for TSC formation, it remains unclear how differentiation cues link elimination of stemness with the establishment of TSC identity. Here, we show that PRDM14, a critical pluripotent circuitry component, is reduced during the formation of TSCs. The reduction is further shown to be due to the activation of Wnt/ß-catenin signaling. The extinction of PRDM14 results in the erasure of H3K27me3 marks and chromatin opening in the gene loci of TSC TFs, including GATA3 and TFAP2C, which enables their expression and thus the initiation of the TSC formation process. Accordingly, PRDM14 reduction is proposed here as a critical event that couples elimination of stemness with the initiation of TSC formation. The present study provides novel insights into how induction signals initiate TSC formation.


Cell Differentiation , DNA-Binding Proteins , Transcription Factors , Trophoblasts , Wnt Signaling Pathway , Trophoblasts/metabolism , Trophoblasts/cytology , Animals , Mice , Transcription Factors/metabolism , Transcription Factors/genetics , Cell Differentiation/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , GATA3 Transcription Factor/metabolism , GATA3 Transcription Factor/genetics , Transcription Factor AP-2/metabolism , Transcription Factor AP-2/genetics , Stem Cells/metabolism , Stem Cells/cytology , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Histones/metabolism , Histones/genetics
13.
BMC Musculoskelet Disord ; 25(1): 359, 2024 May 06.
Article En | MEDLINE | ID: mdl-38711079

BACKGROUND: With the increasing incidence of steroid-induced necrosis of the femoral head (SNFH), numerous scholars have investigated its pathogenesis. Current evidence suggests that the imbalance between lipogenesis and osteoblast differentiation in bone marrow mesenchymal stem cells (BMSCs) is a key pathological feature of SNFH. MicroRNAs (miRNAs) have strong gene regulatory effects and can influence the direction of cell differentiation. N6-methyladenosine (m6A) is a prevalent epigenetic modification involved in diverse pathophysiological processes. However, knowledge of how miRNAs regulate m6A-related factors that affect BMSC differentiation is limited. OBJECTIVE: We aimed to investigate the role of miR27a in regulating the expression of YTHDF2 in BMSCs. METHODS: We compared miR27a, YTHDF2, and total m6A mRNA levels in SNFH-affected and control BMSCs. CCK-8 and TUNEL assays were used to assess BMSC proliferation and apoptosis. Western blotting and qRT‒PCR were used to measure the expression of osteogenic (ALP, RUNX2, and OCN) and lipogenic (PPARγ and C/EBPα) markers. Alizarin Red and Oil Red O staining were used to quantify osteogenic and lipogenic differentiation, respectively. miR27a was knocked down or overexpressed to evaluate its impact on BMSC differentiation and its relationship with YTHDF2. Bioinformatics analyses identified YTHDF2 as a differentially expressed gene in SNFH (ROC analysis) and revealed potential signaling pathways through GSEA. The effects of YTHDF2 silencing on the lipogenic and osteogenic functions of BMSCs were assessed. RESULTS: miR27a downregulation and YTHDF2 upregulation were observed in the SNFH BMSCs. miR27a knockdown/overexpression modulated YTHDF2 expression, impacting BMSC differentiation. miR27a silencing decreased m6A methylation and promoted osteogenic differentiation, while YTHDF2 silencing exerted similar effects. GSEA suggested potential signaling pathways associated with YTHDF2 in SNFH. CONCLUSION: miR27a regulates BMSC differentiation through YTHDF2, affecting m6A methylation and promoting osteogenesis. This finding suggests a potential therapeutic target for SNFH.


Adenosine/analogs & derivatives , Cell Differentiation , Mesenchymal Stem Cells , MicroRNAs , Osteogenesis , RNA-Binding Proteins , MicroRNAs/genetics , MicroRNAs/metabolism , Mesenchymal Stem Cells/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Osteogenesis/genetics , Humans , Femur Head Necrosis/genetics , Femur Head Necrosis/metabolism , Femur Head Necrosis/chemically induced , Cells, Cultured , Apoptosis , Adenosine/metabolism , Animals , Male , Methylation , Cell Proliferation , Lipogenesis/genetics
14.
Elife ; 132024 May 15.
Article En | MEDLINE | ID: mdl-38747717

Invertebrates use the endoribonuclease Dicer to cleave viral dsRNA during antiviral defense, while vertebrates use RIG-I-like Receptors (RLRs), which bind viral dsRNA to trigger an interferon response. While some invertebrate Dicers act alone during antiviral defense, Caenorhabditis elegans Dicer acts in a complex with a dsRNA binding protein called RDE-4, and an RLR ortholog called DRH-1. We used biochemical and structural techniques to provide mechanistic insight into how these proteins function together. We found RDE-4 is important for ATP-independent and ATP-dependent cleavage reactions, while helicase domains of both DCR-1 and DRH-1 contribute to ATP-dependent cleavage. DRH-1 plays the dominant role in ATP hydrolysis, and like mammalian RLRs, has an N-terminal domain that functions in autoinhibition. A cryo-EM structure indicates DRH-1 interacts with DCR-1's helicase domain, suggesting this interaction relieves autoinhibition. Our study unravels the mechanistic basis of the collaboration between two helicases from typically distinct innate immune defense pathways.


Caenorhabditis elegans Proteins , Caenorhabditis elegans , RNA, Double-Stranded , Ribonuclease III , Animals , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/chemistry , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , RNA, Double-Stranded/metabolism , Ribonuclease III/metabolism , Ribonuclease III/chemistry , Ribonuclease III/genetics , Cryoelectron Microscopy , DEAD-box RNA Helicases/metabolism , DEAD-box RNA Helicases/chemistry , DEAD-box RNA Helicases/genetics , RNA Helicases/metabolism , RNA Helicases/genetics , RNA Helicases/chemistry , Protein Binding , Adenosine Triphosphate/metabolism , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , DEAD Box Protein 58/metabolism , DEAD Box Protein 58/genetics , DEAD Box Protein 58/chemistry
15.
Cancer Immunol Immunother ; 73(7): 130, 2024 May 15.
Article En | MEDLINE | ID: mdl-38748254

Immune surveillance and chemotherapy sensitivity play critical functions in the tumorigenesis of breast cancer (BC). Emerging findings have indicated that circular RNA (circRNA) and N6-methyladenosine (m6A) both participate in the BC tumorigenesis. Here, present study aimed to investigate the roles of m6A-modified circATAD2 on BC and explore better understanding for BC precision therapeutic. Results reported that m6A-modifid circRNA (m6A-circRNA) microarray revealed the m6A-circRNA landscape in BC. M6A-modifid circATAD2 upregulated in BC samples and was closely correlated to poor prognosis. Functionally, circATAD2 promoted the immune evasion of BC cells and reduced the CD8+ T cells' killing effect. Mechanistically, MeRIP-seq unveiled the m6A modification in the 3'-UTR of PD-L1 mRNA, which was bound by circATAD2 and recognized by m6A reader IGF2BP3 to enhance PD-L1 mRNA stability and expression. In summary, these findings revealed the circATAD2/m6A/IGF2BP3/PD-L1 axis in BC immune surveillance, suggesting the potential that circATAD2 as a potential target for PD-L1-mediated BC.


B7-H1 Antigen , Breast Neoplasms , CD8-Positive T-Lymphocytes , Immunologic Surveillance , RNA, Circular , RNA-Binding Proteins , Humans , Breast Neoplasms/immunology , Breast Neoplasms/genetics , Female , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , B7-H1 Antigen/metabolism , B7-H1 Antigen/genetics , RNA, Circular/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Adenosine/analogs & derivatives , Adenosine/metabolism , Animals , Gene Expression Regulation, Neoplastic , Mice , Prognosis , Cell Line, Tumor
16.
Sci Rep ; 14(1): 10987, 2024 05 14.
Article En | MEDLINE | ID: mdl-38745101

The length of 3' untranslated regions (3'UTR) is highly regulated during many transitions in cell state, including T cell activation, through the process of alternative polyadenylation (APA). However, the regulatory mechanisms and functional consequences of APA remain largely unexplored. Here we present a detailed analysis of the temporal and condition-specific regulation of APA following activation of primary human CD4+ T cells. We find that global APA changes are regulated temporally and CD28 costimulatory signals enhance a subset of these changes. Most APA changes upon T cell activation involve 3'UTR shortening, although a set of genes enriched for function in the mTOR pathway exhibit 3'UTR lengthening. While upregulation of the core polyadenylation machinery likely induces 3'UTR shortening following prolonged T cell stimulation; a significant program of APA changes occur prior to cellular proliferation or upregulation of the APA machinery. Motif analysis suggests that at least a subset of these early changes in APA are driven by upregulation of RBM3, an RNA-binding protein which competes with the APA machinery for binding. Together this work expands our understanding of the impact and mechanisms of APA in response to T cell activation and suggests new mechanisms by which APA may be regulated.


3' Untranslated Regions , Lymphocyte Activation , Polyadenylation , Humans , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/immunology , Gene Expression Regulation , Signal Transduction , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , CD28 Antigens/metabolism , CD28 Antigens/genetics , T-Lymphocytes/metabolism , T-Lymphocytes/immunology
17.
BMC Psychiatry ; 24(1): 342, 2024 May 07.
Article En | MEDLINE | ID: mdl-38714976

OBJECTIVE: To find the relationship between N6-methyladenosine (m6A) genes and Major Depressive Disorder (MDD). METHODS: Differential expression of m6A associated genes between normal and MDD samples was initially identified. Subsequent analysis was conducted on the functions of these genes and the pathways they may affect. A diagnostic model was constructed using the expression matrix of these differential genes, and visualized using a nomogram. Simultaneously, an unsupervised classification method was employed to classify all patients based on the expression of these m6A associated genes. Following this, common differential genes among different clusters were computed. By analyzing the functions of the common differential expressed genes among clusters, the role of m6A-related genes in the pathogenesis of MDD patients was elucidated. RESULTS: Differential expression was observed in ELAVL1 and YTHDC2 between the MDD group and the control group. ELAVL1 was associated with comorbid anxiety in MDD patients. A linear regression model based on these two genes could accurately predict whether patients in the GSE98793 dataset had MDD and could provide a net benefit for clinical decision-making. Based on the expression matrix of ELAVL1 and YTHDC2, MDD patients were classified into three clusters. Among these clusters, there were 937 common differential genes. Enrichment analysis was also performed on these genes. The ssGSEA method was applied to predict the content of 23 immune cells in the GSE98793 dataset samples. The relationship between these immune cells and ELAVL1, YTHDC2, and different clusters was analyzed. CONCLUSION: Among all the m6A genes, ELAVL1 and YTHDC2 are closely associated with MDD, ELAVL1 is related to comorbid anxiety in MDD. ELAVL1 and YTHDC2 have opposite associations with immune cells in MDD.


Adenosine , Depressive Disorder, Major , Humans , Depressive Disorder, Major/genetics , Adenosine/analogs & derivatives , Adenosine/genetics , Female , Male , Methylation , RNA-Binding Proteins/genetics , Adult , Nomograms , RNA Helicases
18.
FASEB J ; 38(9): e23622, 2024 May 15.
Article En | MEDLINE | ID: mdl-38703029

Endometriosis (EMs)-related infertility commonly has decreased endometrial receptivity and normal decidualization is the basis for establishing and maintaining endometrial receptivity. However, the potential molecular regulatory mechanisms of impaired endometrial decidualization in patients with EMs have not been fully clarified. We confirmed the existence of reduced endometrial receptivity in patients with EMs by scanning electron microscopy and quantitative real-time PCR. Here we identified an lncRNA, named BMPR1B-AS1, which is significantly downregulated in eutopic endometrium in EMs patients and plays an essential role in decidual formation. Furthermore, RNA pull-down, mass spectrometry, RNA immunoprecipitation, and rescue analyses revealed that BMPR1B-AS1 positively regulates decidual formation through interaction with the RNA-binding protein insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2). Downregulation of IGF2BP2 led to a decreased stability of BMPR1B-AS1 and inhibition of activation of the SMAD1/5/9 pathway, an inhibitory effect which diminished decidualization in human endometrial stromal cells (hESCs) decidualization. In conclusion, our identified a novel regulatory mechanism in which the IGF2BP2-BMPR1B-AS1-SMAD1/5/9 axis plays a key role in the regulation of decidualization, providing insights into the potential link between abnormal decidualization and infertility in patients with EMs, which will be of clinical significance for the management and treatment of infertility in patients with EMs.


Endometriosis , RNA, Long Noncoding , RNA-Binding Proteins , Adult , Female , Humans , Bone Morphogenetic Protein Receptors, Type I/metabolism , Bone Morphogenetic Protein Receptors, Type I/genetics , Decidua/metabolism , Decidua/pathology , Endometriosis/metabolism , Endometriosis/genetics , Endometriosis/pathology , Endometrium/metabolism , Endometrium/pathology , Infertility, Female/metabolism , Infertility, Female/genetics , Infertility, Female/pathology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Signal Transduction , Stromal Cells/metabolism , Smad Proteins , Young Adult
19.
Sci Rep ; 14(1): 10287, 2024 05 04.
Article En | MEDLINE | ID: mdl-38704454

The identification of regulatory networks contributing to fetal/adult gene expression switches is a major challenge in developmental biology and key to understand the aberrant proliferation of cancer cells, which often reactivate fetal oncogenes. One key example is represented by the developmental gene LIN28B, whose aberrant reactivation in adult tissues promotes tumor initiation and progression. Despite the prominent role of LIN28B in development and cancer, the mechanisms of its transcriptional regulation are largely unknown. Here, by using quantitative RT-PCR and single cell RNA sequencing data, we show that in erythropoiesis the expression of the transcription factor SOX6 matched a sharp decline of LIN28B mRNA during human embryo/fetal to adult globin switching. SOX6 overexpression repressed LIN28B not only in a panel of fetal-like erythroid cells (K562, HEL and HUDEP1; ≈92% p < 0.0001, 54% p = 0.0009 and ≈60% p < 0.0001 reduction, respectively), but also in hepatoblastoma HepG2 and neuroblastoma SH-SY5H cells (≈99% p < 0.0001 and ≈59% p < 0.0001 reduction, respectively). SOX6-mediated repression caused downregulation of the LIN28B/Let-7 targets, including MYC and IGF2BP1, and rapidly blocks cell proliferation. Mechanistically, Lin28B repression is accompanied by SOX6 physical binding within its locus, suggesting a direct mechanism of LIN28B downregulation that might contribute to the fetal/adult erythropoietic transition and restrict cancer proliferation.


RNA-Binding Proteins , SOXD Transcription Factors , Humans , SOXD Transcription Factors/genetics , SOXD Transcription Factors/metabolism , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Cell Line, Tumor , Gene Expression Regulation, Developmental , Erythropoiesis/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Hep G2 Cells , K562 Cells , Gene Expression Regulation, Neoplastic , Erythroid Cells/metabolism
20.
Mol Cell ; 84(9): 1811-1815.e3, 2024 May 02.
Article En | MEDLINE | ID: mdl-38701742

Post-translational modifications of proteins (PTMs) introduce an extra layer of complexity to cellular regulation. Although phosphorylation of serine, threonine, and tyrosine residues is well-known as PTMs, lysine is, in fact, the most heavily modified amino acid, with over 30 types of PTMs on lysine having been characterized. One of the most recently discovered PTMs on lysine residues is polyphosphorylation, which sees linear chains of inorganic polyphosphates (polyP) attached to lysine residues. The labile nature of phosphoramidate bonds raises the question of whether this modification is covalent in nature. Here, we used buffers with very high ionic strength, which would disrupt any non-covalent interactions, and confirmed that lysine polyphosphorylation occurs covalently on proteins containing PASK domains (polyacidic, serine-, and lysine-rich), such as the budding yeast protein nuclear signal recognition 1 (Nsr1) and the mammalian protein nucleolin. This Matters Arising Response paper addresses the Neville et al. (2024) Matters Arising paper, published concurrently in Molecular Cell.


Lysine , Phosphoproteins , Protein Processing, Post-Translational , RNA-Binding Proteins , Phosphorylation , Lysine/metabolism , Phosphoproteins/metabolism , Phosphoproteins/chemistry , Phosphoproteins/genetics , Humans , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/chemistry , Nucleolin , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/chemistry , Animals , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Polyphosphates/metabolism , Polyphosphates/chemistry , Osmolar Concentration
...